
\qquad
\qquad
[Outline

- Types of test scores and what they mean
- Raw Scores
- Developmental (Age/Grade) Scores
- Rank Scores
- Standard Scores
- Criterion Referenced Scores \qquad
- Standard error of measurement
- Activity

CaL! Rint
$+2$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Raw Scores

- The number of correctly answered test items.
- Limits to interpretation?
- Cannot be compared to other individuals \qquad (normative groups)
- Cannot be compared to other test scores \qquad (relative strengths and weaknesses)
\qquad
- Can show small changes over time
\qquad
\qquad
 \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$\left.\begin{array}{|l|l|}\hline[\text { Developmental Scores }\end{array}\right]$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Developmental Scores

- "Steve obtained a math fact grade score of 6.9 (end of the sixth grade) on \qquad the WJIII. This means that even though he is in the $4^{\text {th }}$ grade, he is \qquad ready for $7^{\text {th }}$ grade math."
- True or False? Discuss. Interpret 6.9. \qquad
\qquad
CALFロッ! \qquad

- Scores based on performance of others.
- Percentile
- The most commonly used rank score
- The percentage of persons in the standardization sample who fall below a given raw score
- You can't have a percentile score of 100 as you can exceed your own score
- Scores of students are arranged in rank order from lowest to highest
- The scores are divided into 100 groups.

CALIFOHETHO

revelang

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Rank Scores

- Percentile Strength

Easy to understand

- Percentile Weakness
- Unequal units, especially at the extreme ends of the distribution.

CALEOEAT,

\qquad
\qquad
\qquad
\qquad

Rank Scores
\qquad

- Decile ranks ("Deca" means "ten)
- Scores of students are arranged in rank order from lowest to highest.
- Scores are divided into 10 groups or bands (instead of 100 as with percentiles).
- Quartile ranks
- Scores of students are arranged in rank order from lowest to highest.
- Scores are divided into 4 equally sized groups or bands (instead of 10 as with deciles or 100 as with percentiles)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Standard Scores

\qquad

- Scores based on performance of others.
- Express the how far a student's raw score is
\qquad from the mean in terms of the standard deviation of the standardization samples \qquad score distribution.
- Z-scores
- A measure of the distance in standard deviations of a score from a mean. \qquad

nainen

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
- Cautions when interpreting IQ test scores
- http://www.wilderdom.com/intelligence/IQ CautionsInterpretingIQ.html
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[Explaining Scores to Parents]
 - http://www.teachersandfamilies.com/o pen/parent/scores2.cfm

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- Scores not based on performance of others.
- Percent correct
- Percentile rank is often confused with \qquad these scores
- Grades \qquad
- When not comparing to the performance of others

CALIERTM,

\qquad
\qquad
\qquad
\qquad
\qquad Error in Test Scores
\qquad

- Error is always present in scores
- Raw score = true score + error
\qquad

The goals are to

- Reduce error \qquad
- Account for error
- Reliability and validity reduce error \qquad
- Standard Error of Measure accounts for error \qquad
CALFロッ! \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
[Standard Error of Measurement $\left(\mathrm{SE}_{\mathrm{m}}\right)$]
- Estimate of the amount of variance in an obtained test score. \qquad
- How much is the person's score likely to differ from the true score? \qquad
- Formula
- SEM=(SD) x square root of ($1-r_{x x}$)
- $r_{x x}$ a reliability coefficient

richatios maicen = \qquad

SE ${ }_{m}$
\qquad

- No test is 100% reliable. All psychological test \qquad results are associated with some degree of measurement error
- The standard error of measurement $\left(S E_{m}\right)$ is an estimate of this error
- $S E_{m}$ is directly related to a test's reliability coefficients. Large $S E_{m}$ scores are associated with relatively poor reliability and visa versa
- $S E_{m}$ is the standard deviation of the distribution of error scores.

\qquad
\qquad

Psychometric theory suggests that if an individual was given the same test multipl times, these obtained scores would cluster around the true score. These obtained scores would be normally distributed and form a normal curve.

Standard Error of Measurement

- $S E_{m}$ is obtained by multiplying the standard deviation of the test by the square root of 1 minus the reliability coefficient $\left(r_{x x}\right)$ of the test.
- $S E_{m}=S D \sqrt{1-r_{x x}}$
- For example, assume that a reading achievement test with a mean of 100 and a standard deviation of 15 has an internal consistency reliability coefficient of .96 ,
- $15 \sqrt{1-.96}=15 \sqrt{0.04}=15(0.2)=3=S E_{m}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- $68 \%, 90 \%$, and $95 \% \mathrm{Cl}$ are typically used.
- A 68\% CI provides the range of scores within with a testing subject's true score lies 68% of the time. In other words, only 32 times out of 100 will the true score fall outside of this range.
- A $90 \% \mathrm{Cl}$ provides the range of scores within with a testing subject's true score lies 90% of the time. In other words, only 10 times out of 100 will the true score fall outside of this range.
- A $95 \% \mathrm{Cl}$ provides the range of scores within with a testing subject's true score lies 95% of the time. In other words, only 5 times out of 100 will the true score fall outside of this range.
\qquad

Confidence Intervals

\qquad

- The formula for a confidence interval is as \qquad follows:
- $\mathrm{Cl}=$ obtained test score $\pm z\left(S E_{m}\right)$
- The " z " in this formula refers to the z score obtained
\qquad
from a normal cure table.
- Sample Normal Curve Table.
- For example, the $95 \% \mathrm{Cl}$ for an reading achievement test scaled score of 99 for our test with a $S E_{m}$ of 3 is 99 ± 1.96 (3).
- 1.96 times 3 equals 5.88 . \qquad
Rounded up to six, we can say that we are 95\% standard score of 99 has a true score falling in the range 93 to $105(99 \pm 6)$.

CALFORMA

Confidence Intervals
 - In a psycho-educational report these data might be presented as follows:
 - "On this measure Jimmy obtained an standard score of 99 ± 6. The chances are 95 out of 100 that Jimmy's true reading achievement falls in the range of scores 93 to 105. These data are well within the average range. Thus, it can be concluded that Jimmy's reading achievement is typical of children his age in this test's standardization sample.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Wide Range Assessment of Memory and Learning				
summary oata				
	Stamsomes			
menemar	(2)	cos	97-113	
nueam	(6)	(88)	80-96	212
мremomocam	(2)	(112)	105-119	69
sesenumer	(2)	(0)	--	
Sceemom neamer	O			
momomoveer	(20)	400	$92-108$	50^{2}
veen hecocamox	(3)	(108)	99-117	
nswerecomen	(3)	109	101-117	
oseene meocamor	cb	(II)		,
CALIR	mat			32

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Bringing it all Together

- Mean, Median, and Mode are the same.
\qquad
50% of scores are above the mean
50% of scores are below the mean
- $\pm 1 \mathrm{SD}=68 \%$ (most) of the obtained scores
- ± 2 SD $=95 \%$ (almost all) of the obtained scores
- ± 3 SD $=99.7 \%$ (virtually all) of the obtained scores

CALFOM,
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Bringing it all Together

－Standard Error of Measurement $\left(\mathrm{SE}_{\mathrm{M}}\right)$ allows the psychologist to account for the error always associated with a given obtained test score．
－It can be used to develop confidence intervals．
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Bringing it all Together

- $S E_{M}$ is obtained by multiplying the standard deviation (SD) of the test by the square root of 1 minus the reliability coefficient (r) of the test.

$$
S D \sqrt{1-r}
$$

- What two statistics are needed to determine the SE_{M} ?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$\left[\begin{array}{l}\text { Bringing it all Together }\end{array}\right]$
\qquad
\qquad
\qquad
But what is r ?
$S E_{M}$ is a reflection of the degree to which a test \qquad consistently yields the same results for an individual (i.e., that the test itself is reliable).
What is the Alternate Form Reliability correlation \qquad
\qquad
\qquad
As part of the test
development process development process,
estimates of the tests reliability (or consistency) are determined.
For example, alternate
form reliability would
correlate individuals
scores on separate
versions of the same IQ test.

Form A	Form B
101	102
100	100
98	96
115	114
88	88
120	122
61	65
99	98
95	95
\ldots	\ldots
106	106

$r=.90$
ChLFORHM 5imm
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$\left.\begin{array}{|l|l|}\hline \text { Bringing it all Together }\end{array}\right]$
\qquad
\qquad
\qquad
Rounded down to 8, we can say that we are 90% confident that the student who obtained the IQ test score of 105 has a true IQ score falling in the range 98 to 112 \qquad

For a test with a SE_{M} of 5 and a SD of 15 , the range of IQ scores 98 to 112includes 90% of the obtained scores \qquad (i.e., true score + error) a student might be expected
\qquad
CALF:
4 \qquad

Test Bias

\qquad

- Psychometric definition
- A test with systematic differences in the meaning of test scores associated with group membership.
- People from two groups who have the same observed score do not have the same standing on the trait of interest.
- A test to predict some criterion of interest results in systematic over- or under- prediction based on group membership.
\qquad
\qquad
\qquad
\qquad
\qquad

PPossible Bias in Traditional
 Cognitive Measures

－Inadequate norms
－Testing formats
－Product－oriented response
－Unfamiliar with information tapped
－Lack of relationship between test and classroom
－Test－taking skills
－Trait measurement and stability

CALFO日，

Cultural Considerations：
Assessment
－Culture and value orientation
－Acculturation
－Culture and communication styles

CALIFORHAK nith

1．The midpoint of a range of scores is the
\qquad —．

2．The \qquad represents the most frequently achieved score within a range of scores．

3．The \qquad is a \qquad measure for variance in a set of scores．

4. Stanines break ordered scores into parts.
5. Most IQ scores have a mean of \qquad and a standard deviation of \qquad .
6. A T-score has a mean of \qquad and a standard deviation of \qquad .

CALIFORIM nim
Trata
adican=
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

QUIZ

7. What does a z score represent?
\qquad
8. What is the standard error of measurement \qquad (SEM) and how is it helpful in score interpretation?
9. Cornelius' score on the Quick Draw Test placed him at the $35^{\text {th }}$ percentile. What
\qquad does this mean (in words a parent would understand)?

CALEOM!
5inen
Cuncotating
\qquad
\qquad
\qquad

\qquad
10. What is the main limitation in the use of
\qquad percentile ranks?
11. What are primary limitation in the use of grade equivalent scores?
12. Henrietta Goodegg received a z-score of +1.5 on the speeded chicken plucking test. What is her T-score? Is she slower or faster than the average chicken plucker?

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]: ## Review

 Is it possible to construct a psycho-educational test that generates an individual's true score?
 On a psycho-educational test, what is the "obtained" score?
 3. Hypothetically, how would one determine the true test score for an individual?
 4. What is the standard error of measurement $\left(\mathrm{SE}_{M}\right)$? How is the SE_{M} determined?
 What can you say about a psycho-educational test that has a large SE_{M}

